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   Abstract 

 There is a growing interest in exploring the connectivity 
patterns of the human brain. Specifi cally, the utility of nonin-
vasive neuroimaging data and graph theoretical analysis have 
provided important insights into the anatomical connections 
and topological pattern of human brain structural networks  in 
vivo . This review focuses on recent methodological and appli-
cation studies, utilizing graph theoretical approaches, on brain 
structural networks with structural magnetic resonance imag-
ing (MRI) and diffusion MRI. These studies showed many 
nonrandom properties of structural brain networks, such as 
small-worldness, modularity, and highly connected hubs. 
Importantly, topological organization of the networks shows 
changes during normal development, aging, and neuropsy-
chiatric diseases. Network structures have also been found to 
correlate with behavioral or cognitive functions, which imply 
their associations with functional dynamics. These advances 
not only help us to understand how the healthy human brain 
is structurally organized, but also provide a novel insight into 
the biological mechanisms of brain disorders. Future studies 
will involve the combination of structural/diffusion MRI and 
functional MRI, to realize how the structural connectivity 
patterns of the brain underlie its functional states, and will 
explore whether graph theoretical analysis of structural brain 
networks could serve as potential imaging biomarkers for 
disease diagnosis and treatment.  

   Keywords:    connectome;   graph theory;   magnetic resonance 
imaging;   modularity;   small-world;   structural brain networks.     

  Introduction 

 The human brain is a highly dense neural architecture, which 
is structurally organized into complex networks of fi ber bun-
dles with the capacity for information generation, segrega-
tion, and integration. To understand the dynamic processing 
of the human brain, an important issue in neuroscience, is to 
map the connection pattern of the human brain (known as the 

 ‘ human connectome ’ ) with the elements and connections in 
different levels, such as at microscale (e.g., single neurons), 
mesoscale (e.g., a group of neurons), and macroscale (e.g., 
distinct brain regions) (Sporns et al. , 2005 ; Sporns , 2011 ). 
With structural connectivity, the human connectome repre-
sents the organization of the neuronal elements, which are 
structurally linked, and shows the network architecture in spe-
cifi c constraints on brain dynamics. Nowadays, noninvasive 
neuroimaging modalities, including structural magnetic reso-
nance imaging (MRI) and diffusion MRI, have been widely 
used to measure the structural characteristics of the human 
brain. Through these techniques, the structural human con-
nectome can be established by mapping the anatomical con-
nectivity between distinct regions. By further modeling the 
human brain as a complex network, graph theoretical analysis 
provides an important framework to explore the architecture 
of the human connectome involving the information propa-
gation in the nervous system. Researchers have found many 
nonrandom topological properties of brain networks such as 
small-worldness, effi ciency, modularity, and network hubs 
(Bassett and Bullmore , 2006  , 2009 ; Bullmore and Sporns , 
2009 ; He and Evans , 2010 ; Stam , 2010 ; Wang et al. , 2010;  
Wen et al. , 2011a ). These approaches provide a network-
level representation for investigation of the human brain  in a 
global view. Recently, structural brain networks have demon-
strated that the topological patterns correspond with specifi c 
biological characteristics such as development (Hagmann et 
al. , 2010 ; Fan et al. , 2011 ) and gender (Gong et al. , 2009a ; Lv 
et al. , 2010 ; Yan et al. , 2010 ). Moreover, it has been suggested 
that many neurological and psychiatric disorders can be 
described as dysconnection syndromes (Catani and Ffytche , 
2005 ). The topology of the brain connectome has a major 
potential impact for our understanding of brain alterations, 
either damage or reorganization in diseases (Petrella , 2011 ). 
Abnormal topological organization, with disruption of struc-
tural connectivity in disorders, may be related to impairment 
of cognitive functions or behaviors. The architecture of the 
brain networks may serve as a potential imaging biomarker 
for disease diagnosis or evaluation of treatment response 
(Bullmore and Sporns , 2009 ; He et al. , 2009a ; He and Evans , 
2010 ). Focusing on the growing interest in the brain connec-
tome, in this review, we summarized recent advances for the 
topological organization of human brain structural networks, 
in health and diseases, revealed by neuroimaging modalities 
with graph theoretical approaches.  

  Graph theoretical approaches 

 A network can be described as a graph, which is composed of 
a set of nodes (vertices) that are connected by edges (connec-
tions). The edges can be directed (edges are directed from one 
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node to another) or undirected (no direction for each edge), 
and additionally can be unweighted (all edges have the same 
weight of 1) or weighted (edges have different strengths). The 
complex structural brain network can be reconstructed by 
linking the regions-of-interest of the cerebral cortex (nodes) 
with the structural connections (edges). The present review 
focuses on only undirected brain networks. 

 Graph theory is a mathematical analysis framework that 
represents the topological characteristics of complex networks, 
for the communication of nodes connected by edges. Several 
key points of network metrics are described in the following 
perspectives. More detailed descriptions of graph theory have 
been reported (Boccaletti et al. , 2006 ). In general, the clustering 
coeffi cient and the shortest path length are two basic measure-
ments for each graph to quantify local and global architectures 
(Watts and Strogatz , 1998 ). The clustering coeffi cient of a net-
work is the average of the clustering coeffi cient over all nodes. 
In detail, the clustering coeffi cient of a node is defi ned as the 
ratio of the existing connections to all possible connections 
of neighboring nodes that are connected directly to this node 
(Strogatz , 2001 ). This characteristic indicates the extent of 
local cliquishness or interconnectivity for information transfer 
in a network (Watts and Strogatz , 1998 ; Latora and Marchiori , 
2001 ). The path length between a pair of nodes is defi ned as 
the sum of the edge lengths along this path. The shortest path 
length for a network is defi ned as the average of minimum 
path lengths for each pair of nodes, which quantifi es the abil-
ity for information propagation in parallel. Of note, these two 
measurements can classify the network architectures into reg-
ular, small-world, and random networks (Watts and Strogatz, 
1998). Importantly, the most effi cient model is the small-world 
network, which is characterized by a high extent of local inter-
connectivity and small path length linking individual network 
nodes (Watts and Strogatz , 1998 ). In practice, a real network 
can be examined to be the small-world model, by comparing 
the clustering coeffi cient and shortest path length with those of 
matched random networks. That is, a small-world network not 
only has higher local transitivity, but also the approximately 
equivalent shortest path length compared with random net-
works. On the other hand, the path length can also approach the 
effi ciency for a network (Latora and Marchiori , 2001 ). Global 
and local effi ciencies conceptually correspond to the shortest 
path length and clustering coeffi cient, respectively (Latora and 
Marchiori , 2003 ). Specifi cally, the global effi ciency of a net-
work is the inverse of the harmonic mean of the shortest path 
length between each pair of nodes within the network, which 
represents the transfer speed of parallel information for a net-
work. That is, the shorter the path length is, the more effi cient 
the network will be. The local effi ciency of one node is the 
global effi ciency of the subnetwork that which is composed by 
its directly connected neighbors (not including itself) and the 
local effi ciency of a network is the average of the local effi -
ciency of each node. The local effi ciency refl ects how much 
the network is fault tolerant and how well the information is 
transferred within the neighbors of a given node. Alternatively, 
a network with both high local and global effi ciencies, is con-
sidered to be a small-world network (Latora and Marchiori , 
2001, 2003 ; Gong et al. , 2009a ; He et al. , 2009b ). 

 Another way to quantify the organization of a network is 
modularity. Many complex networks consist of a number of 
modules, which are organized into modular or community 
structures. Modularity refers to the construction of a network 
by modules of linked nodes that are densely inter-connected 
together and relatively sparsely connected to the nodes in 
other modules (Newman , 2006 ). Currently, there are various 
optimized algorithms with different advantages which can be 
used to describe the modularity (Fortunato , 2010 ). For exam-
ple, a widely used method for module detection is proposed 
by Newman and Girvan  (2004) , which depends on the impor-
tance of edges to fi nd the optimized modules. Detecting the 
composition of modules in a structural brain network, which 
represents the groups of components connected anatomically, 
can help us to realize how nodes are clustered and whether 
those modules are responsible for specifi c cognitive functions 
(Meunier et al. , 2010 ). 

 In addition, the network properties for a node can also be 
described by nodal characteristics such as degree (or strength 
in weighted networks), nodal effi ciency, and betweenness 
centrality. The nodal degree/strength is the sum of all binary/
weighted edges of one node, which measures the single nodal 
connectivity to the rest of the nodes in a network. The nodal 
effi ciency for each node is the inverse of mean harmonic 
shortest path length between this node and all other nodes in a 
network (Achard and Bullmore , 2007 ). This metric indicates 
the ability of the node for communicating to the other nodes 
within the network. The betweenness centrality of a node is 
the count of the shortest paths between any pair of nodes that 
have to pass through this node (Freeman , 1977 ). These nodal 
metrics can also be used to determine the hub nodes in the 
networks. A node with high degree, effi ciency or betweenness 
can be considered as a hub (He et al. , 2007 ; Hagmann et al. , 
2008 ; Gong et al. , 2009b ).  

  Structural brain networks 

 One of the key issues in studying the structural brain connec-
tome is node defi nition of the human cerebral cortex, which 
has usually been defi ned by pre-parcellated regions such as 
automated anatomical labeling (AAL) ( Tzourio-Mazoyer et 
al., 2002 ) and automatic nonlinear imaging matching and ana-
tomical labeling (ANIMAL) (Collins et al. , 1995 ). The other 
important issue is the construction of a structural connec-
tion matrix to characterize the connectivity between regions. 
Recently, morphometry-based and white matter (WM) con-
nections via structural MRI and diffusion MRI have been 
used to construct the networks of structural connectivity in 
the human brain  in vivo . The following description and Figure 
 1   show the concept for structural network construction. 

  Gray matter (GM) networks 

 With structural MRI, gray matter (GM) morphology of the 
brain has demonstrated that the interregional statistical asso-
ciations in cortical measurements provide important structural 
or functional connectivity in the human brain (Lerch et al. , 
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2006 ). The correlation of morphological measurements (e.g., 
volume, thickness, or surface area) between cortical regions 
across subjects, has been represented as a morphometric con-
nectivity to map the connection matrix (He et al. , 2009a ). 
That is, an edge between two regions will be established if the 
measurements are highly correlated. With these approaches, 
He et al.  (2007) , fi rst utilizing interregional cortical thick-
ness correlations, demonstrated that the GM network of the 
human brain follows a small-world confi guration, implying 
that the structural brain architecture has high clustering and 
short path length. Subsequently, Chen et al.  (2008)  showed 
that the GM network consists of six modules that are likely to 
be associated with specifi c brain functions such as strategic/
executive, auditory/language, sensorimotor, visual, and mne-
monic processing. Bassett et al.  (2008) , using interregional 
volumetric correlations, indicated that the classical divisions 
of cortex (multimodal, unimodal, and transmodal) have some 
distinct topological attributes, and that all divisions have a 
small-world model with effi cient wiring. Moreover, they 
also indicated that the multimodal network has a hierarchical 
organization, whereas the transmodal network is assortative. 
 Sanabria-Diaz et al. (2010)  demonstrated that the GM brain 
network, derived from surface area metrics, also has a small-
world organization, whereas the topological parameters are 
different from those of cortical thickness based GM network.  

  White matter (WM) networks 

 For the white matter (WM) neural pathway, the recent dif-
fusion MRI, involving diffusion tensor imaging (DTI), dif-
fusion spectrum imaging (DSI), and q-ball imaging (QBI), 
is a unique technique that can be used to probe direction-
dependent diffusivity of water molecules  in vivo  to refl ect 
the microstructural tissue status and orientations. Neural 
tractography (so-called fi ber tracking) by propagating the 
orientation information in each voxel, has demonstrated its 
ability to map WM trajectories (Mori and van Zijl , 2002 ). By 
linking the distinct regions with fi ber tracts, it is possible to 
reveal WM anatomical connections and map the whole brain 
connectivity. Topological patterns of the human brain WM 
networks have been recently investigated through diffusion-
MRI based tractography, which provides a novel method to 
study the effi ciency of brain communication ( Iturria-Medina 
et al., 2007 ). Hagmann et al.  (2007)  showed the fi rst capa-
bility of revealing brain anatomical topology based on DSI 
tractography, and demonstrated the small-world architecture 
of the human brain. The WM networks that have major struc-
tural cores within the posterior medial and parietal cerebral 
cortex (Figure 2A), and contain six modular structures, were 
then examined (Hagmann et al. , 2008 ). Gong et al.  (2009b) , 
exploiting a group based WM network with DTI tractography 
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 Figure 1    The framework for the construction of structural brain network. 
 The defi nition of network nodes: (1) the parcellation of cerebral cortex into anatomical distinct regions. The defi nition of network edges: 
the green arrows and red arrows, respectively, indicate the procedure for gray matter and white matter network construction, (2) the 
structural or diffusion MR image acquisition, (3) cortical measurement (left) or diffusion-based tractography (right), (4) construction of a 
connection matrix by interregional correlation of cortical measurements (left) or diffusion-based tractography (right), (5) graph theoreti-
cal analysis.    
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from 80 healthy subjects, showed that the major hub regions 
of the human brain are predominately located in associa-
tion with cortices connecting the long-range fi ber pathways 
(Figure  2  B). With different schemes of WM network con-
structions, Zalesky et al.  (2010b)  showed broadly consistent 
topological patterns of WM networks constructed with DTI 
and QBI from the same subjects, but quite different topologi-
cal properties of WM networks with different parcellation 
scales. 

 These important studies, using graph theoretical analysis to 
investigate the structural network of the human brain, opened 
a new fi eld for investigating structural topology involving 
the information processing ability of brain. Nowadays, the 

attributes of structural brain connectomes have been widely 
studied in multiple domains, to show a convincing perspec-
tive in neuroscience. See Table  1   for recent literatures of 
structural brain networks reviewed in this article.   

  Structural brain networks in normal 

population 

 To date, studies focusing on sex dimorphism, development, 
and aging with graph theoretical analysis have revealed spe-
cifi c topological characteristics of structural brain networks in 
a normal population. 

Participant A-E
A

B

4 or 5 participants

0 or 1 participant
2 participants
3 participants

Participant A
Participant B
Participant C
Participant D
Participant E

 Figure 2    Major hub distribution in WM networks of the human brain. 
 Note that the principle hubs in WM networks in both studies are predominately located in the posterior medial and parietal cortical regions. 
(A) Average network core across all fi ve participants in (Hagmann et al. , 2008 ), which were derived by k-core decomposition of a binary con-
nection matrix obtained by thresholding the high-resolution fi ber densities, such that a total of 10 000 connections remain in each participant. 
Nodes are plotted according to their core number, counted backwards from the last remaining core. (B) Node betweenness centrality map on the 
human cerebral cortex. According to the AAL template ( Tzourio-Mazoyer et al., 2002 ), the cerebral cortex was parcellated into 78 regions (39 
regions per hemisphere), each representing a node in the anatomical cortical network. Regions were mapped into an average cortical surface 
obtained from ICBM152 according to their normalized betweenness centrality values. The color bar indicating the range of normalized node 
betweenness is shown on the right. Hub regions identifi ed in this study are marked on the map. For the abbreviations of the regions, see Gong 
et al.  (2009b ).    
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  Development/aging 

 The characterization of time-dependent changes of brain 
systems can help us to understand brain development and 
aging (Power et al. , 2010 ). Given that the mature human brain 
has structurally been optimally organized into a complex net-
work (Hagmann et al. , 2007 ; He et al. , 2007 ; Bassett et al. , 
2008 ; Chen et al. , 2008 ; Hagmann et al. , 2008 ; Gong et al. , 
2009b ), studying the topological patterns of large-scale struc-
tural brain network in a global level across a lifespan may 
provide more intellections for the developing process of brain 
organization. In addition to brain development, some studies 
focusing on normal aging of structural brain networks have 
been reported. 

 With morphometry-based connections, Fan et al.  (2011) , 
using longitudinal data from 28 healthy subjects at the early 
ages of 1   month, 1   year, and 2   years, showed that the GM 
networks of early brains have the small-world topology and 
modular organization, and that the effi ciency of the brain net-
work increases with brain development. In a normal aging 
study, Zhu et al.  (2010) , exploiting younger (age range: 
44 – 48   years) and older (age range: 64 – 68   years) cohort data, 
found that there are lower global effi ciencies and higher clus-
tering coeffi cients in the GM networks of the older cohort 
compared with the younger cohort. The brain networks of the 
older cohort have reduced hemispheric asymmetry, and some 
cortical regions, such as the hippocampus and insula, have 
lower nodal centrality. Chen et al.  (2011) , investigating young 
(age range: 20 – 27   years) and aging (age range: 60 – 94   years) 
groups, indicated that the GM network of the aging group 
has a signifi cantly reduced modularity with reduced intra-/
inter-module connectivity in modules corresponding to the 
executive function and the default mode network of young 
adults. Wu et al.  (2011)  reported that small-world effi ciency 
and node betweenness of the GM networks revealed a U- or 
inverted U-shape model tendency among young (age range: 
18 – 40   years), middle (age range: 41 – 60   years), and aging 
(age range: 61 – 80   years) groups. They also found that the 
modular organization of structural brain networks was similar 
between the young and middle age groups, but quite different 
from the elder group. 

 For WM networks in development, Hagmann et al.  (2010)  
demonstrated that the nodal strength and effi ciency increase, 
and the clustering coeffi cient decreases with age in WM net-
works of the late developing brain (age range: 2 – 18   years). 
Moreover, this study also indicated that the structural con-
nectivity is positively correlated with functional connectivity, 
which strengthened with age. For normal aging, Gong et al. 
 (2009a)  demonstrated that the overall cortical connectivity 
and the local effi ciency in the brain WM network, is reduced 
with age (age range: 19 – 85   years). They also found that the 
negative age effect on nodal effi ciency was mainly local-
ized to regions in the parietal and occipital cortex, whereas 
the positive age effect concentrated on regions in the fron-
tal and temporal cortex. Wen et al.  (2011b) , exploiting the 
association between cognitive functions and the attributes of 
structural brain networks from 342 healthy elders (age range: 
72 – 92   years), showed that the processing speed, visuospatial, 

and executive functions are associated with the global effi -
ciency of structural brain networks, and that many regions (59 
regions out of 68) including most of the frontal and temporal 
cortices, have decreased nodal effi ciency with age. This study 
also indicated that there are signifi cant correlations between 
the nodal effi ciency of specifi c cortical regions and certain 
specifi c cognitive functions, e.g., the higher the nodal effi -
ciency of the superior frontal gyrus and posterior cingulate 
cortex in the WM network, the better the executive functions. 
Moreover, this work identifi ed that, for the fi rst time, regional 
anatomical connectivity maps relate to processing speed and 
visuospatial and executive functions in the elders.  

  Sex difference/lateralization 

 Sexual dimorphism has been indicated in GM and WM 
(Sowell et al. , 2007 ; Cheng et al. , 2009 ; Chou et al. , 2011 ). 
In a morphometry-based study, Lv et al.  (2010)  reported that 
there are signifi cant gender-related differences of cortical 
thickness in the frontal, parietal and occipital lobes. However, 
there was no gender-related statistical difference in additional 
graph theoretical analysis of GM networks. In WM networks, 
Gong et al.  (2009a)  showed that female brains have greater 
overall connectivity and local and global effi ciencies than 
males. Yan et al.  (2010)  indicated that the local effi ciency in 
female brains is higher than in male brains, and they found a 
correlation between sex and brain size, in that smaller brains 
showed higher local effi ciency in females but not in males. 

 For brain lateralization, it has been demonstrated that the 
human brain is asymmetrical in terms of structure and func-
tion (Toga and Thompson , 2003 ).  Iturria-Medina et al. (2010)  
showed the asymmetry of brain GM networks, where the right 
hemisphere is signifi cantly more effi cient and interconnected 
than the left hemisphere. Interestingly, they found that the left 
hemisphere presents more central or indispensable regions for 
the whole-brain structural network than the right hemisphere. 
On the otherhand, it has also been suggested that functional 
asymmetry of the human brain is correlated with gender, such 
as language function (Kansaku et al. , 2000 ). Tian et al.  (2011) , 
utilizing resting-state functional MRI (rs-fMRI), indicated 
that the right hemispheric network has a higher normalized 
clustering coeffi cient, but the left hemispheric network has a 
lower clustering coeffi cient in males, compared with females. 
Although structural asymmetry of the human brain has been 
shown ( Iturria-Medina et al., 2010 ), no study has reported 
gender-linked lateralization of structural brain networks.  

  Others 

 In a normal population, there are also some special topics of 
interest to investigate in graph theoretical analysis. Recently, 
investigators using graph theoretical analysis showed that 
structural brain networks are related to intelligence and graph-
eme-color synesthesia (GCS). Li et al.  (2009)  reported that 
people with higher scores on intelligence tests have greater 
global effi ciency in brain WM networks, and found that the 
shortest path length and global effi ciency are associated with 
intelligence scores. In GCS, Hänggi et al. (2011) indicated 
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a globally signifi cant, different structural network topology 
in synesthetes. Compared with nonsynesthetes, the GM net-
works in synesthetes have reduced small-worldness, increased 
clustering, increased degree, and decreased betweenness cen-
trality. In their study, the hierarchical modularity analysis also 
revealed increased intramodular and intermodular connectiv-
ity of the intraparietal sulcus in GCS.   

  Structural brain networks in clinical population 

 In recent years, many investigators have shifted the focus of 
brain abnormalities from regional to global view on structural 
brain networks, to understand brain alterations by diseases, 
and to look for potential biomarkers for diseases. 

  Alzheimer ’ s disease and mild cognitive impairment 

 The atrophy of GM in the medial temporal, posterior cin-
gulate/precuneus and lateral temporo-parietal structures is 
associated with Alzheimer ’ s disease (AD) (Dickerson and 
Sperling , 2005 ; Salmon et al. , 2008 ). Neural degeneration in 
specifi c WM tracts has also been observed, including corpus 
callosum, posterior cingulate fasciculus, and thalamic con-
nections (Zarei et al. , 2010 ). In a global view, alterations of 
structural brain networks with morphometry-based connec-
tivity in AD were fi rst demonstrated by He et al.  (2008) ; sig-
nifi cant decreased cortical thickness intercorrelations between 
the bilateral parietal regions and increased intercorrelations 
in several cortical regions, involving the lateral temporal and 
parietal cortex, and the cingulate and medial frontal cortex 
regions, were indicated (Figure  3  ). Importantly, they showed 
that the AD GM networks have abnormal small-world archi-
tecture, with higher clustering coeffi cients and longer shortest 
path lengths compared with healthy controls, implying that 
they favor a regular confi guration in AD networks. Since mild 
cognitive impairment (MCI) is often considered to be a pro-
dromal phase of AD, Yao et al.  (2010) , using interregional 
volumetric correlations to compare the GM networks of the 
MCI patients, AD patients, and matched healthy controls, 
demonstrated that AD networks have the largest clustering 
coeffi cient and longest shortest path length in the 3 groups, 
and that MCI networks have intermediate characteristics. 
However, signifi cant differences in these two network metrics 
were only found between AD and healthy controls, indicat-
ing the transitional stage in MCI. AD-related alterations in 
WM networks have been also studied (Lo et al. , 2010 ), show-
ing that the AD networks not only have the longer shortest 
path length and decreased global effi ciency, but also reduced 
nodal effi ciency predominantly located in the frontal regions 
(Figure  4  ). Moreover, they showed that reduced topologi-
cal properties are associated with specifi c memory-related 
scores in patients. In the most recent study, the combina-
tion diffusion indices and topological patterns of WM net-
works have been used to classify MCI patients (Wee et al. , 
2011 ). The clustering coeffi cient of each node (brain region) 
was extracted as the features for classifi cation with support 
vector machine, and the results showed that accuracy of the 

classifi cation is 88.9 %  for detecting brain abnormalities in 
MCI patients. Given the alterations of topological attributes 
in AD and MCI patients, network metrics may be potential 
biomarkers for early diagnosis and therapeutic interventions 
of AD. With graph theoretical analysis, functional imaging 
studies also indicated AD-related alterations of topological 
patterns in functional networks (see He et al. , 2009a  for AD 
networks review).  

  Multiple sclerosis 

 The impairment of multiple sclerosis (MS) arises predomi-
nantly from impaired neuronal conduction due to WM 
lesions, and is also associated with morphological abnormali-
ties in GM (Rovaris et al. , 2005 ; Filippi et al. , 2010 ). Using 
morphometric connections and graph theoretical analysis, the 
overall effi ciency of structural brain networks was reduced 
with the total WM lesion loads (TWMLL), and the nodal effi -
ciency also was found to be decreased in several brain regions 
such as the insula and the precentral gyrus (He et al. , 2009b ). 
In WM networks, Shu et al.  (2011)  indicated that the global 
and local effi ciencies are disrupted in MS patients, and that 
these metrics are also associated with disease duration and 
TWMLL. Notably, in the collected subset of MS patients with 
visual defi cit, the distribution of regions with reduced nodal 
effi ciency was similar to results derived from analysis in all 
collected patients, but the most signifi cantly reduced nodal 
effi ciency was located in the left superior occipital gyrus, 
suggesting that the topological changes of the WM networks 
could be associated with specifi c behavior defi cits in the MS 
patients. These two studies provide evidence for the associa-
tion of the decline of information processing in structural 
brain networks and WM lesions for MS patients.  

  Schizophrenia 

 In the fi rst GM network study in schizophrenia, Bassett et al. 
 (2008)  indicated that the brain GM networks of schizophrenia 
patients have an abnormal multimodal network organization, 
with reduced hierarchy, the loss of frontal and the emergence 
of nonfrontal hubs, and increased connection distance. In 
WM networks, van den Heuvel et al.  (2010)  indicated that 
the overall networks reveal no difference in their tested met-
rics between schizophrenia patients and healthy controls. 
However, the regions with increased shortest path length were 
found in the frontal and temporal lobes in patients, especially 
of bilateral inferior or superior frontal cortex and temporal 
pole regions. Notably, the weights of edges in their study were 
defi ned with magnetic transfer ratio and fractional anisotropy 
for different weighted network constructions. Zalesky et al. 
 (2011)  demonstrated that the average nodal degree and net-
work effi ciency were signifi cantly reduced in WM networks 
of the patients. Moreover, this study further identifi ed an 
impaired network that interconnected medial frontal regions 
and several regions of parietal/occipital lobes in the patients 
using network-based statistic analysis, which is based on the 
principles underpinning traditional cluster-based thresholding 
of statistical parametric maps (Zalesky et al. , 2010a ).  
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  Epilepsy 

 It has been shown that the GM networks in temporal lobe 
epilepsy (TLE) have increased shortest path length and clus-
tering coeffi cient, altered distribution of network hubs, and 
higher vulnerability to targeted attacks than healthy controls 
(Bernhardt et al. , 2011 ), which suggested the reorganiza-
tion process in TLE. The longitudinal analysis in their work 
additionally demonstrated that network alterations intensify 
over time. Moreover, they also showed the high reproduc-
ibility of network parameters across random subsamplings, 
which proved their consistent fi ndings. In a different kind of 
network-level analysis in TLE, Raj et al.  (2010)  used corti-
cal thickness and curvature measurements to derive disease 

progress and constructed the brain network with the pro-
gression paths (not intercorrelation of volumetric measure-
ments). They also proposed a new network measurement 
 ‘ pickiness ’ , which involves entropy, complexity, and expo-
nential decay. With the network approaches for classifying 
a given structural MRI into normal or TLE, the classifi er 
showed better accuracy (93 % ) than the non-network clas-
sifi er (73 % ).  

  Others 

 There are some specifi c, important topics of using graph the-
oretical approaches to explore brain damage or alterations. 
Crofts et al.  (2011)  demonstrated that the WM networks 
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 Figure 3    Topological alterations of gray matter networks in Alzheimer ’ s disease (AD). 
 (A) Between-group differences in clustering coeffi cient ( C   p  ) and shortest path length ( L   p  ) as a function of sparsity. The upper graph shows 
the differences (red circles) in the  C   p   between the controls and AD patients as a function of sparsity thresholds. The gray lines represent 
the mean values (open circles) and 95 %  confi dence intervals of the between-group differences obtained from 1000 permutation tests at 
each sparsity value. The arrows indicate a signifi cant ( p  < 0.05) difference in  C   p   between the two groups. Note that AD patients (dotted 
lines) show larger  C   p   values in the brain networks than controls (solid lines) over a wide range of thresholds (inset). The lower graph 
shows the differences (red circles) in the  L   p   between the controls and AD patients as a function of sparsity thresholds. The gray lines 
represent the mean values (open circles) and 95 %  confi dence intervals of the between-group differences obtained from 1000 permutation 
tests at each sparsity value. The arrows indicate a signifi cant ( p  < 0.05) difference in  L   p   between the two groups. Note that AD patients 
(dotted lines) show larger  L   p   values in the brain networks than controls (solid lines) over a wide range of thresholds (inset). (B) Regions 
showing signifi cant AD-related changes in betweenness were mapped to anatomical space in the control (upper panel) and AD (lower 
panel) groups. Regions showing AD-related decreases are colored in cyan, and regions showing AD-related increases are colored in red. 
Black lines represent the links of the networks. Note that these results were obtained from the brain networks with a sparsity of 13 % . NC, 
  normal controls.    
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 Figure 4    Regions with signifi cant differences in nodal effi ciency between Alzheimer ’ s disease and normal controls. 
 The brain regions showing signifi cant group difference in nodal effi ciency are mapped onto the cortical surfaces at the lateral view. Notably, the 
network shown here was constructed by averaging the anatomical connection matrices of all subjects. The nodal regions are located according 
to their centroid stereotaxic coordinates. The edge widths represent the strengths of the connections between nodes. The statistical criterion 
for between-group differences was set at  p  < 0.05 (false discovery rate-corrected). The color bar represents t values of group comparison after 
removing the effects of age and sex. For the abbreviations of the regions, see Lo et al.  (2010) .    

in stroke patients have a reduced communicability (similar 
with shortest path length but involving all possible paths 
between regions, Estrada and Hatano , 2008 ) in regions sur-
rounding the lesions in the affected hemisphere. In addi-
tion, they found that the communicability of homologous 
locations in the contralesional hemisphere was reduced for 
a subset of these regions. From blind subjects (mean age: 
22   years, blinded within the fi rst year of life) and matched 
healthy controls, Shu et al.  (2009)  showed that the WM net-
works of blindness have a decreased degree of connectiv-
ity, reduced global effi ciency, and increased characteristic 
path length, especially in the visual cortex with disrupted 
attributes. They also indicated that motor or somatosen-
sory functions in related regions have increased connec-
tivity and effi ciency, suggesting experience-dependent 
compensatory.   

  Methodological issues and future perspectives 

 Some consistent topological characteristics of structural brain 
networks, such as small-worldness, modular structures, and 
core regions, have been demonstrated by utilizing the neu-
roimging techniques with graph theoretical analysis. In this 
review, recent advances have shown the structural connec-
tivity patterns of the human brain in normal and clinical 
populations such as development, aging, and neuropathology 
diseases, however, these are still in early stages. There are 
many challenging issues and further considerations for stud-
ies of human brain structural networks. 

 Nodes and edges are the most basic components of the 
structural brain network; there is a lack of a gold standard 
for the construction of brain networks. Various parcellation 

schemes, either predefi ned atlases or random parcellation, can 
be used to defi ne the nodes for the brain network. In previous 
studies, different predetermined anatomical templates such as 
Brodmann ’ s areas (Brodmann , 1909 ), AAL ( Tzourio-Mazoyer 
et al., 2002 ), and ANIMAL (Collins et al. , 1995 ) have been 
widely used to construct the brain networks; the random par-
cellation of brain regions has also been used to investigate the 
brain networks in different spatial scales (Table  1 ). Structural 
and functional brain networks that are constructed with dif-
ferent parcellation schemes, have signifi cantly different topo-
logical properties (Wang et al. , 2009 ; Hayasaka and Laurienti , 
2010 ;  Sanabria-Diaz et al., 2010 ; Zalesky et al. , 2010b ). 
Therefore, the node defi nition for network construction is 
important, since the topological organization is quite different 
with different parcellation schemes. On the other hand, the 
defi nition of edges for the construction of structural brain net-
work depends on the image processing and the connectivity 
methods. It has been demonstrated that different defi nitions of 
edges for structural brain networks may cause the constructed 
networks to present different topological properties ( Iturria-
Medina et al., 2010 ;  Sanabria-Diaz et al., 2010 ). Moreover, 
for weighted networks, the edge ’ s weight, which expresses 
the strength of the connection between nodes, may represent 
different meanings with different usages. For example, the 
weight of the WM network for each edge may be assigned by 
fi ber number, fi ber length, or probability, which may refl ect 
the fi ber density, path distance, or chance of connectivity, 
respectively. These various methods are important factors 
in representing the properties of the brain connectivity and 
should be carefully selected for suitable use during network 
construction and further analysis. 

 The tests of stability and reproducibility for network met-
rics of the brain are also important. More systematic analyses 
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of brain networks in this topic are necessary, since only a few 
studies have identifi ed the consistent topological features 
when evaluating the network metrics with multiple tests. 
Vaessen et al.  (2010)  indicated that the WM network con-
struction exhibits high reproducibility of small-world metrics 
with DTI-based tractography, which is reconstructed from a 
different image acquisition such as the number of gradient 
direction and gradient strength. Bassett et al.  (2011a)  also 
showed high reproducibility and low variability of network 
metrics for WM networks which were constructed with DTI 
and DSI. The evaluations provide robust attributes of graph 
theoretical analysis, which may help us investigate structural 
brain networks for longitudinal studies. 

 For further consideration, an interesting question is, how 
do the structural brain networks relate to individual char-
acteristics ?  In a twin study, Schmitt et al.  (2008)  showed 
that the associations of cortical thickness among regions 
are genetically mediated in the frontoparietal and occipital 
networks. However, no study demonstrated the relation-
ship between topological patterns and phenotype. Li et al. 
 (2009)  found that the global effi ciency of WM networks had 
a strong correlation with intelligence quotient. This fi nding 
has also been found in the functional brain network which 
was constructed with rs-fMRI (van den Heuvel et al. , 2009 ). 
Moreover, in a recent fMRI study, Bassett et al.  (2011b)  indi-
cated the modularity changes of functional brain network 
during human learning, which shows the brain reconfi gura-
tion. Accordingly, further investigations for the relationship 
between structural brain network organization and individual 
characteristics, may provide the insight into brain plastic-
ity and fl exibility. For the clinical population, the network 
topology may be also a characteristic that can be used for 
diagnosis. The network metrics have been used to classify 
clinical patients such as MCI patients (Wee et al. , 2011 ) and 
TLE patients (Raj et al. , 2010 ), suggesting that the poten-
tial features of diseases might be revealed by the network 
organization. On the other hand, combination of different 
neuroimaging techniques to probe the functional and struc-
tural connectivity may help us know how information pro-
cessing is associated with the underlying brain structure. It 
has been suggested that functional connectivity may refl ect 
the structural connections (Damoiseaux and Greicius , 2009 ). 
Hagmann et al.  (2008)  showed that there is a high correlation 
between structural connectivity and functional connectivity 
which were derived from DSI and rs-fMRI. Subsequently, 
Honey et al.  (2009)  indicated that the structural brain net-
works have similar topological features with functional 
network, implying a close association between structural 
and functional connections. This application has also been 
applied into a development study, which showed that the 
structural connectivity is highly correlated with functional 
connectivity, which strengthened by age (Hagmann et al. , 
2010 ). The integration of different modalities may provide a 
more straightforward understanding of the association of the 
structural and functional brain networks for the connectivity 
of brain organization. 

 To reveal the highly complex structural organization of 
the human brain, more methodological problems need to be 

solved. Individual variances or different methods of network 
construction may affect the network topological patterns that 
revealed controversial properties in previous studies. The 
GM network, which presents cortical thickness correlations 
between brain regions, may only refl ect partial WM con-
nections (Gong et al., unpublished). Since the WM network 
shows more directly structural connections, the combina-
tion of the GM and WM networks is consequential to study 
the structural connectivity of the human brain. However, to 
what extent can the WM network reveal the structural orga-
nization of the human brain ?  Previous WM network stud-
ies, that utilized streamline-tractography with DTI instead 
of DSI or QBI to construct WM networks, faced some gen-
eral problems such as fi ber crossing or fi ber kissing within a 
voxel. The streamline-tractography is also sensitive to noise 
and has propagation errors, so that the resultant network is 
also dependent on image quality. The probabilistic tractog-
raphy may reduce these effects on network constructions. 
Previously, the tractography of diffusion MRI has shown 
its ability to reconstruct the fi ber bundles from animals (Lin 
et al. , 2001,   2003 ) or phantoms (Fillard et al. , 2011 ). The 
evaluation of the reliability of WM connectivity with animal 
diffusion data, such as DTI, QBI, and DSI, is also an impor-
tant issue to be investigated. Moreover, the combination of 
graph theoretical analysis and a detailed dissection approach 
with an animal model may help us realize the expression of 
the topological properties of the brain. To account for highly 
individual variance across subjects, the collection and dis-
tribution of large-scale neuroimaging data for investiga-
tions of the human connectome are important and necessary. 
Several public neuroimaging databases such as  ‘ Human 
Connectome Project ’  ( http://www.humanconnectomeproject.
org ),  ‘ Alzheimer ’ s Disease Neuroimaging Initiative (ADNI) ’  
( http://www.adni-info.org/ ), and  ‘ Open Access Series of 
Imaging Studies (OASIS) ’  ( http://www.oasis-brains.org/ ) 
have become recently available, and offer further systemati-
cal investigations of the human brain connectome in normal 
and clinical populations.  

  Conclusion 

 Graph theoretical analysis applied to neuroimaging data, 
offers a powerful way to explore the topological organiza-
tion of human structural brain networks. The topological 
characteristics of structural brain networks, not only repre-
sent how the brain is structurally organized, but also shed 
light on brain fl exibility, which provides novel insights 
into the reconfi guration of the brain in multiple domains. 
Focusing on structural brain networks with recent advances 
of neuroimaging techniques and analytical approaches, fur-
ther research is needed to confi rm and identify the pattern 
of structural connectivity of the human brain, and to inves-
tigate whether and how the brain structure network may 
constrain the functional integration. The accomplishments 
summarized in this review, show a new aspect to realize the 
organizational mechanisms of the brain and its interaction 
with functional dynamics.    
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